A Model Intercomparison Project (MIP) consists of teams who each estimate the same underlying quantity (e.g., temperature projections to the year 2070), and the spread of the estimates indicates their uncertainty. It recognizes that a community of scientists will not agree completely but that there is value in looking for a consensus and information in the range of disagreement. A simple average of the teams' outputs gives a consensus estimate, but it does not recognize that some outputs are more variable than others. Statistical analysis of variance (ANOVA) models offer a way to obtain a weighted consensus estimate of outputs with a variance that is the smallest possible and hence the tightest possible 'one-sigma' and 'two-sigma' intervals. Modulo dependence between MIP outputs, the ANOVA approach weights a team's output inversely proportional to its variation. When external verification data are available for evaluating the fidelity of each MIP output, ANOVA weights can also provide a prior distribution for Bayesian Model Averaging to yield a consensus estimate. We use a MIP of carbon dioxide flux inversions to illustrate the ANOVA-based weighting and subsequent consensus inferences.


翻译:模型相互比较项目(MIP)由各小组组成,每个小组分别估计相同的基本数量(如2070年的温度预测),而估计数的分布表明其不确定性。它承认科学家群体不会完全达成一致,但寻找共识和各种不同意见的信息是有价值的。小组产出的简单平均数提供了协商一致的估计,但并不承认某些产出比其他产出更具有变量。对差异的统计分析(ANOVA)模型提供了一种途径,以获得对产出的加权一致估计,其差异最小,因此也是最接近的“一格玛”和“二格玛”间隔。Modulo在MIP产出之间的依赖性,ANOVA对团队产出的加权与其差异成反比。当有外部核查数据用于评价每项MIP产出的准确性时,ANOVA重量也可以提供Bayesian模型的事先分发,以得出协商一致的估计。我们使用二氧化碳通量的MIP,用于说明基于ANOVA的加权和随后的协商一致。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
0+阅读 · 2021年9月8日
Arxiv
8+阅读 · 2021年7月15日
Arxiv
10+阅读 · 2021年2月18日
Conceptualize and Infer User Needs in E-commerce
Arxiv
3+阅读 · 2019年10月8日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【计算机类】期刊专刊/国际会议截稿信息6条
Call4Papers
3+阅读 · 2017年10月13日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员