Optimizing expensive black-box systems with limited data is an extremely challenging problem. As a resolution, we present a new surrogate optimization approach by addressing two gaps in prior research -- unimportant input variables and inefficient treatment of uncertainty associated with the black-box output. We first design a new flexible non-interpolating parsimonious surrogate model using a partitioning-based multivariate adaptive regression splines approach, Tree Knot MARS (TK-MARS). The proposed model is specifically designed for optimization by capturing the structure of the function, bending at near-optimal locations, and is capable of screening unimportant input variables. Furthermore, we develop a novel replication approach called \emph{Smart-Replication}, to overcome the uncertainty associated with the black-box output. The Smart-Replication approach identifies promising input points to replicate and avoids unnecessary evaluations of other data points. Smart-Replication is agnostic to the choice of a surrogate and can adapt itself to an unknown noise level. Finally to demonstrate the effectiveness of our proposed approaches we consider different complex global optimization test functions from the surrogate optimization literature. The results indicate that TK-MARS outperforms original MARS within a surrogate optimization algorithm and successfully detects important variables. The results also show that although non-interpolating surrogates can mitigate uncertainty, replication is still beneficial for optimizing highly complex black-box functions. The robustness and the quality of the final optimum solution found through Smart-Replication are competitive with that using no replications in environments with low levels of noise and using a fixed number of replications in highly noisy environments.
翻译:优化昂贵且数据有限的黑箱系统是一个极具挑战性的问题。作为一个解决方案,我们展示了一种新的替代优化方法,解决了先前研究中的两个缺口 -- -- 与黑箱输出相关的输入变量无关重要,对不确定性的处理效率低下。我们首先设计了一种新的灵活且不内插的、有讽刺色彩的代谢模型,使用基于分区的多变适应性回归样条式方法,Tree Knot MARS(TK-MARS) 。拟议模型是专门为优化而设计的,通过捕捉功能结构,在近最佳地点弯曲,并能够筛选非重要投入变量中的两个缺口。此外,我们开发了一种名为\emph{Smart-Rempredition}的新式复制方法,以克服与黑箱输出相关的不确定性。智能化方法确定了有希望的输入点,以便复制和避免对其他数据点进行不必要的评估。智能复制对于仍然选择具有启发性,并且可以将数字调整到一个未知的高度的噪音水平。最后展示了我们拟议方法的有效性,我们考虑的是,从替代的绿色复制性复制的复制性功能中选择了不同的全球初始黑点测试功能,但是也通过大量的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度,在模型的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度是的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度的精度。