In the classic apportionment problem the goal is to decide how many seats of a parliament should be allocated to each party as a result of an election. The divisor methods provide a way of solving this problem by defining a notion of proportionality guided by some rounding rule. Motivated by recent challenges in the context of electoral apportionment, we consider the question of how to allocate the seats of a parliament under parity constraints between candidate types (e.g. equal number of men and women elected) while at the same time satisfying party proportionality. We consider two different approaches for this problem. The first mechanism, that follows a greedy approach, corresponds to a recent mechanism used in the Chilean Constitutional Convention 2021 election. We analyze this mechanism from a theoretical point of view. The second mechanism follows the idea of biproportionality introduced by Balinski and Demange [Math. Program. 1989, Math. Oper. Res. 1989]. In contrast with the classic biproportional method by Balinski and Demange, this mechanism is ruled by two levels of proportionality: Proportionality is satisfied at the level of parties by means of a divisor method, and then biproportionality is used to decide the number of candidates allocated to each type and party. We provide a theoretical analysis of this mechanism, making progress on the theoretical understanding of methods with two levels of proportionality. A typical benchmark used in the context of two-dimensional apportionment is the fair share (a.k.a matrix scaling), which corresponds to an ideal fractional biproportional solution. We provide lower bounds on the distance between these two types of solutions, and we explore their consequences in the context of two-dimensional apportionment.


翻译:在传统的分配分配问题中,目标是决定每个政党因选举而应分配多少个议会席位; 不同方法提供了解决这一问题的一种方法,通过以一些四舍五入的规则来界定相称性概念; 由于最近选举分配方面的挑战,我们审议了如何在候选人类别(例如当选的男女人数相等)之间的均等限制下分配议会席位的问题,同时满足政党的相称性; 我们考虑了解决这一问题的两种不同方法; 第一个机制,遵循贪婪方法,与智利2021年制宪会议选举采用的最新机制相对应; 我们从理论角度分析这一机制; 第二个机制遵循巴林斯基和德曼热(Matth. program.1989, Math. Math. Oper. Res. 1989)提出的双重比例性概念; 与巴林斯基和德曼热的典型双比例性方法相比,这个机制由两种程度的相称性决定: 在政党一级,通过一种调和两种方式对等,然后对双比例进行双比例性比例性比例性; 在两种级别上,对两种等级进行理论性分析,对两种等级进行两种比例性分析。

0
下载
关闭预览

相关内容

【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月6日
Arxiv
6+阅读 · 2021年6月24日
VIP会员
相关VIP内容
【DeepMind】强化学习教程,83页ppt
专知会员服务
152+阅读 · 2020年8月7日
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
【Google】监督对比学习,Supervised Contrastive Learning
专知会员服务
73+阅读 · 2020年4月24日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员