Bagging and boosting are two popular ensemble methods in machine learning (ML) that produce many individual decision trees. Due to the inherent ensemble characteristic of these methods, they typically outperform single decision trees or other ML models in predictive performance. However, numerous decision paths are generated for each decision tree, increasing the overall complexity of the model and hindering its use in domains that require trustworthy and explainable decisions, such as finance, social care, and health care. Thus, the interpretability of bagging and boosting algorithms, such as random forest and adaptive boosting, reduces as the number of decisions rises. In this paper, we propose a visual analytics tool that aims to assist users in extracting decisions from such ML models via a thorough visual inspection workflow that includes selecting a set of robust and diverse models (originating from different ensemble learning algorithms), choosing important features according to their global contribution, and deciding which decisions are essential for global explanation (or locally, for specific cases). The outcome is a final decision based on the class agreement of several models and the explored manual decisions exported by users. We evaluated the applicability and effectiveness of VisRuler via a use case, a usage scenario, and a user study. The evaluation revealed that most users managed to successfully use our system to explore decision rules visually, performing the proposed tasks and answering the given questions in a satisfying way.
翻译:拖动和推动是产生许多个别决策树的机器学习(ML)中两种广受欢迎的混合方法。由于这些方法的内在共同特点,它们通常优于单一决策树或其他ML模型的预测性能,然而,为每个决策树创造了许多决策路径,增加了模型的总体复杂性,阻碍了模型在需要可信和可解释决策的领域(如金融、社会护理和保健)的使用。因此,套装和推动算法(如随机森林和适应性增强等)的可解释性随着决策数量的增加而减少。在本文件中,我们提出了一个视觉分析工具,目的是通过彻底的视觉检查工作流程协助用户从这种ML模型中提取决定,其中包括选择一套稳健和多样的模型(源自于不同的混合学习算法),根据它们的全球贡献选择重要特征,并决定哪些决定对于全球解释(或当地具体案例)至关重要。结果是根据若干模型的班级协议和用户输出的手工决定作出的。我们提出了一个视觉分析工具工具工具工具工具,目的是协助用户通过彻底的视觉检查流程从这些模型中提取决定。我们最成功地评估了用户的运用和正确评估方法,用一个评估了一种方法,用一个正确的评估了一种方法。我们用户的系统,用一个正确的评估了一种方法,用一个正确的方法,用一个方法来评估了一种方法,用一种方法来评估了一种方法,用一个正确的方法来分析了一种方法来评估了一种方法,用一个正确的方法来分析了一种方法,用一种方法,用一种方法来评估了一种方法,用一种方法,用一种方法来分析一种方法,用一种方法,用一个正确的方法来分析一个方法,用一个方法来分析一个方法来分析一个方法来分析一个方法来分析一个方法来分析一个方法来分析一个方案。