Frame semantic parsing is a fundamental NLP task, which consists of three subtasks: frame identification, argument identification and role classification. Most previous studies tend to neglect relations between different subtasks and arguments and pay little attention to ontological frame knowledge defined in FrameNet. In this paper, we propose a Knowledge-guided Incremental semantic parser with Double-graph (KID). We first introduce Frame Knowledge Graph (FKG), a heterogeneous graph containing both frames and FEs (Frame Elements) built on the frame knowledge so that we can derive knowledge-enhanced representations for frames and FEs. Besides, we propose Frame Semantic Graph (FSG) to represent frame semantic structures extracted from the text with graph structures. In this way, we can transform frame semantic parsing into an incremental graph construction problem to strengthen interactions between subtasks and relations between arguments. Our experiments show that KID outperforms the previous state-of-the-art method by up to 1.7 F1-score on two FrameNet datasets. Our code is availavle at https://github.com/PKUnlp-icler/KID.
翻译:框架语义解析是一个基本的 NLP 任务, 它由三个子任务组成: 框架识别、 参数识别和角色分类。 大多数先前的研究往往忽略了不同子任务和参数之间的关系, 很少注意FlaimNet 定义的肿瘤框架知识。 在本文中, 我们提出一个由双绘图( KID) 组成的知识引导的递增语义解析器。 我们首先引入框架知识图( FKG), 包含框架和 FEs (Frame 元素) 的混合图, 以框架知识为基础, 以便我们可以为框架和 FEs 获取知识强化的表达式。 此外, 我们提议框架语义图图图( FSG) 代表从文本中提取的语义结构框架。 这样, 我们就可以将语义解析法转换成一个递增式图表构建问题, 以加强子任务和参数之间的关系。 我们的实验显示, KID 以1.7 F1- core 在两个 FramilNet 数据集上, 。 我们的代码是 https://Kpliprc. 。