In this short, conceptual paper we observe that essentially the same mathematics applies in three contexts with disparate literatures: (1) sigmoidal and RBF approximation of smooth functions, (2) rational approximation of analytic functions near singularities, and (3) $hp$ mesh refinement for solution of PDEs. The relationship of (1) and (2) is as simple as the change of variables $s = \log(x)$, and our informal mnemonic for this relationship is ``sigmoid = log(ratapprox).''
翻译:在这份简短的概念文件中,我们注意到,基本上相同的数学适用于三种不同的文献:(1) 模拟和RBF光滑功能的近似值,(2) 接近奇数的分析函数的合理近似值,(3) 用于解决PDE的精细值。(1)和(2) 之间的关系与变数的改变一样简单,例如变数 $s =\log(x)$,而我们这一关系的非正式内核是“sigmoid = log(ratapprox)”。”</s>