Industrial search and recommendation systems mostly follow the classic multi-stage information retrieval paradigm: matching, pre-ranking, ranking, and re-ranking stages. To account for system efficiency, simple vector-product based models are commonly deployed in the pre-ranking stage. Recent works consider distilling the high knowledge of large ranking models to small pre-ranking models for better effectiveness. However, two major challenges in pre-ranking system still exist: (i) without explicitly modeling the performance gain versus computation cost, the predefined latency constraint in the pre-ranking stage inevitably leads to suboptimal solutions; (ii) transferring the ranking teacher's knowledge to a pre-ranking student with a predetermined handcrafted architecture still suffers from the loss of model performance. In this work, a novel framework AutoFAS is proposed which jointly optimizes the efficiency and effectiveness of the pre-ranking model: (i) AutoFAS for the first time simultaneously selects the most valuable features and network architectures using Neural Architecture Search (NAS) technique; (ii) equipped with ranking model guided reward during NAS procedure, AutoFAS can select the best pre-ranking architecture for a given ranking teacher without any computation overhead. Experimental results in our real world search system show AutoFAS consistently outperforms the previous state-of-the-art (SOTA) approaches at a lower computing cost. Notably, our model has been adopted in the pre-ranking module in the search system of Meituan, bringing significant improvements.


翻译:工业搜索和建议系统大多遵循传统的多阶段信息检索模式:匹配、预排、排名、排名和重新排名等。考虑到系统效率,简单的矢量产品模型通常在排名前阶段部署。最近的工作考虑将大型排名模型的高级知识提炼为小型排名前模型,以提高效益。但是,在排名前系统中仍然存在两大挑战:(一) 预先界定的排名前阶段的潜伏限制没有明确模拟性能增益和计算成本,不可避免地导致排名前阶段的偏差性改进;(二) 将高级教师的知识转让给一个预设的手制架构的预年级学生,仍然因模型性能损失而受到影响。在这项工作中,提出了一个新的AutoFAS框架,共同优化排名前模型的效率和效力:(一) AutoFAS首次选择最有价值的特征和网络结构,同时使用神经结构模型搜索(NAS)技术;(二) 在NAS程序期间,配备了排名前指导改进的评级模型,AutoFAS可以选择最高级的排名前系统结构,在不连续进行世界级教师头等成本计算的情况下,连续地将一个教师头等计算机系统升级。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员