In the recent past, different researchers have proposed novel privacy-enhancing face recognition systems designed to conceal soft-biometric information at feature level. These works have reported impressive results, but usually do not consider specific attacks in their analysis of privacy protection. In most cases, the privacy protection capabilities of these schemes are tested through simple machine learning-based classifiers and visualisations of dimensionality reduction tools. In this work, we introduce an attack on feature level-based facial soft-biometric privacy-enhancement techniques. The attack is based on two observations: (1) to achieve high recognition accuracy, certain similarities between facial representations have to be retained in their privacy-enhanced versions; (2) highly similar facial representations usually originate from face images with similar soft-biometric attributes. Based on these observations, the proposed attack compares a privacy-enhanced face representation against a set of privacy-enhanced face representations with known soft-biometric attributes. Subsequently, the best obtained similarity scores are analysed to infer the unknown soft-biometric attributes of the attacked privacy-enhanced face representation. That is, the attack only requires a relatively small database of arbitrary face images and the privacy-enhancing face recognition algorithm as a black-box. In the experiments, the attack is applied to two representative approaches which have previously been reported to reliably conceal the gender in privacy-enhanced face representations. It is shown that the presented attack is able to circumvent the privacy enhancement to a considerable degree and is able to correctly classify gender with an accuracy of up to approximately 90% for both of the analysed privacy-enhancing face recognition systems.


翻译:最近,不同研究人员提出了新的增强隐私的面部识别系统,目的是在特征层面隐藏软生物计量信息。这些作品报告了令人印象深刻的成果,但通常不考虑对隐私保护分析的具体攻击。在多数情况下,这些计划的隐私保护能力通过简单的机器学习分类和维度减少工具的视觉化测试。在这项工作中,我们引入了对基于地貌的面部软生物计量隐私增强技术的攻击。这次攻击基于两种观察:(1) 实现高度的隐私权准确度,面部表现之间的某些相似性必须保留在增强隐私的版本中;(2) 高度相似的面部表现通常来自具有类似的软生物计量特征的面部图像。根据这些观察,拟议攻击将增强隐私的面部表现与一组已知软生物计量特征的增强面部面部面部面部表现进行对比。随后,对获得的最佳相似性评分进行了分析,以推断被攻击的隐私增强面部特征为未知的软生物计量特征。因此,攻击仅需要相对小的面部表示面部表示面部表现的面部表面部表现,而仅需要相对小的90的面部表示面部表现的面部表情表面部表示的面部表情度,而报告的性别分析是准确性分析,对隐私分析,而显示的性别分析是可靠的分析,而显示的自我侵犯的自我分析,而显示的性别分析是可靠的分析,而显示的面部分析,对面部的自我侵犯的自我侵犯的表面分析为一种程度的自我分析为一种程度,对面部表示的自我侵犯性分析为一种程度为一种程度的表面分析,对面部图像分析,对面部的自我分析,对面部的自我分析,对面部分析为一种较深的自我分析,对面部分析是对面部的自我分析,对面部分析,对面部面部的精确性分析,对面部分析是两种分析为一种分析,对面部的自我分析是两种分析,对面部分析,对面部分析,对面部分析,对面部分析是对面部分析,对面部的自我分析,对面部分析,对面部分析,对面部分析为的精确性分析,对面部分析是对面部的自我分析,对面部的自我分析,对面部分析,对面部分析是的

0
下载
关闭预览

相关内容

专知会员服务
91+阅读 · 2021年7月23日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Adversarial Metric Attack for Person Re-identification
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员