We present gP4Pc, a new method for computing the absolute pose of a generalized camera with unknown internal scale from four corresponding 3D point-and-ray pairs. Unlike most pose-and-scale methods, gP4Pc is based on constraints arising from the congruence of shapes defined by two sets of four points related by an unknown similarity transformation. By choosing a novel parametrization for the problem, we derive a system of four quadratic equations in four scalar variables. The variables represent the distances of 3D points along the rays from the camera centers. After solving this system via Groebner basis-based automatic polynomial solvers, we compute the similarity transformation using an efficient 3D point-point alignment method. We also propose a specialized variant of our solver for the case of coplanar points, which is computationally very efficient and about 3x faster than the fastest existing solver. Our experiments on real and synthetic datasets, demonstrate that gP4Pc is among the fastest methods in terms of total running time when used within a RANSAC framework, while achieving competitive numerical stability, accuracy, and robustness to noise.
翻译:我们提出GP4Pc, 这是一种从4个对应的 3D 点和射线配对之间计算内部比例不明的通用相机绝对面状的新方法。 与大多数成形和成比例法不同, gP4Pc 是基于由两组四点组成的形状的一致性造成的制约, 两组四点由未知的相似性转变相关联。 我们选择了一个全新的问题配方, 得出了一个四个二次方程的系统, 共四个大弧变量。 这些变量代表着摄像中心射线上3D点的距离。 在通过基于格鲁伯纳基基的自动多点解答器解决这个系统之后, 我们用高效的 3D点对准方法来计算相似性变换。 我们还为共标点的情况提出了一个专门的解方程式变量, 共标点的计算效率很高, 比现有最快的解方速度要快3x。 我们在真实和合成数据集上的实验显示, gP4Pc 是使用RANSAC 框架内总时间的最快方法之一, 同时实现具有竞争力的数值稳定性、 准确性和准确性。