Deep learning has grown rapidly thanks to its state-of-the-art performance across a wide range of real-world applications. While neural networks have been trained using IEEE-754 binary32 arithmetic, the rapid growth of computational demands in deep learning has boosted interest in faster, low precision training. Mixed-precision training that combines IEEE-754 binary16 with IEEE-754 binary32 has been tried, and other $16$-bit formats, for example Google's bfloat16, have become popular. In floating-point arithmetic there is a tradeoff between precision and representation range as the number of exponent bits changes; denormal numbers extend the representation range. This raises questions of how much exponent range is needed, of whether there is a format between binary16 (5 exponent bits) and bfloat16 (8 exponent bits) that works better than either of them, and whether or not denormals are necessary. In the current paper we study the need for denormal numbers for mixed-precision training, and we propose a 1/6/9 format, i.e., 6-bit exponent and 9-bit explicit mantissa, that offers a better range-precision tradeoff. We show that 1/6/9 mixed-precision training is able to speed up training on hardware that incurs a performance slowdown on denormal operations or eliminates the need for denormal numbers altogether. And, for a number of fully connected and convolutional neural networks in computer vision and natural language processing, 1/6/9 achieves numerical parity to standard mixed-precision.


翻译:深层次的学习由于其在一系列现实世界应用中的最先进的表现而迅速增长。虽然神经网络已经用IEE-754双轨32算术进行了训练,但深层次学习的计算要求的迅速增长提高了人们对更快、低精度培训的兴趣。混合精密培训已经尝试过,将IEE-754双轨16与IEE-754双轨16结合在一起,其他16美元比特格式,例如谷歌的bfloat16已经变得流行。在浮动点算术中,精确度和代表值之间的权衡范围是:超前位位位位位位位位位位数的变化;异常数扩大了表达范围。这提出了需要多少超前位数的问题,即二进位数(5倍)和bfloat16(8倍出位位数)之间是否有一种比两者都更好的格式,以及是否有必要完全的不正态。在目前的论文中,我们研究混合精度的精确度和正轨的计算,我们提议在1/6/9级的运行中要达到一个更精确的直径直径直径。

0
下载
关闭预览

相关内容

一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
【NeurIPS 2019的主要趋势】Key trends from NeurIPS 2019
专知会员服务
11+阅读 · 2019年12月19日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Arxiv
3+阅读 · 2018年8月17日
Adversarial Reprogramming of Neural Networks
Arxiv
3+阅读 · 2018年6月28日
Arxiv
8+阅读 · 2014年6月27日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
【推荐】图像分类必读开创性论文汇总
机器学习研究会
14+阅读 · 2017年8月15日
Top
微信扫码咨询专知VIP会员