Nowadays, there are ubiquitousness of GPS sensors in various devices collecting, storing and transmitting tremendous trajectory data. However, an unprecedented scale of GPS data has posed an urgent demand for not only an effective storage mechanism but also an efficient query mechanism. Line simplification in online mode, a kind of commonly used trajectory compression methods in practice, plays an important role to attack this issue. But for the existing algorithms, either their time cost is extremely high, or the accuracy loss after the compression is too much. To address this, we propose $\epsilon$-Region based Online trajectory Compression with Error bounded (ROCE for short), which makes the best balance among the accuracy loss, the time cost and the compression rate. In most previous work, each trajectory is seen as a sequence of discrete points for various queries. But it's not suitable when the queried trajectories have been compressed, because there may be hundreds of points discarded between each two adjacent points and the points in each compressed trajectory are quite sparse. To attack this issue, in this paper, each compressed trajectory is regarded as a sequence of continuous line segments, but not discrete points. And based on this, we propose a new trajectory similarity metric AL, an efficient index ASP-tree and two algorithms about how to process range queries and top-k similarity queries on the compressed trajectories. Extensive experiments have been done on real datasets and the results demonstrate superior performance of our methods.


翻译:目前,在收集、储存和传输巨大轨迹数据的各种装置中,全球定位系统传感器普遍存在,收集、储存和传输大量轨迹数据。然而,前所未有的全球定位系统数据规模对不仅有效存储机制,而且高效查询机制提出了紧迫需求。在线模式的线条简化是一种在实践中常用的轨迹压缩方法,对解决这一问题起着重要的作用。但对于现有的算法来说,要么其时间成本极高,要么压缩之后的准确性损失过大。为了解决这个问题,我们提议以美元为单位的基于在线轨迹校正压缩错误(简称ROCE)的在线轨迹压缩(简称ROCE),这在精确度损失、时间成本和压缩率之间提供了最佳的平衡。在大多数以前的工作中,每个轨迹都被视为是各种查询的离散点序列。但是,当被查询的轨迹被压缩的时候并不合适,因为每个相邻的点之间可能有数百个点被丢弃,而每个压缩轨迹的点都非常稀少。为了解决这一问题,每条压缩轨迹都被视为一个连续线段序列的序列,但并不是时间成本成本和压缩速率的缩率。基于该轨迹上的双轨迹的轨迹的轨迹的轨迹的轨迹。基于这个方向,我们如何展示上提出了两个方向的轨迹上的轨迹上的轨迹的轨迹的轨迹。

0
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【WWW2020-华为诺亚方舟论文】元学习推荐系统MetaSelector
专知会员服务
56+阅读 · 2020年2月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Compression of Deep Learning Models for Text: A Survey
A Compact Embedding for Facial Expression Similarity
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员