Abductive reasoning aims to make the most likely inference for a given set of incomplete observations. In this work, we propose a new task called abductive action inference, in which given a situation, the model answers the question `what actions were executed by the human in order to arrive in the current state?'. Given a state, we investigate three abductive inference problems: action set prediction, action sequence prediction, and abductive action verification. We benchmark several SOTA models such as Transformers, Graph neural networks, CLIP, BLIP, end-to-end trained Slow-Fast, and Resnet50-3D models. Our newly proposed object-relational BiGED model outperforms all other methods on this challenging task on the Action Genome dataset. Codes will be made available.


翻译:摘要:Abductive推理旨在对给定的不完整观察做出最有可能的推断。在这项工作中,我们提出了一个新的任务,称为Abductive行动推理,在给定情况的情况下,模型回答问题“人类执行了哪些行动以到达当前状态?”。给定状态,我们研究了三个Abductive推理问题:行动集预测,行动序列预测和Abductive行动验证。我们对多个最新模型进行了基准测试,如:Transformers, Graph神经网络, CLIP, BLIP, end-to-end trained Slow-Fast, 以及 Resnet50-3D模型。我们新提出的BiGED对象关系模型在Action Genome数据集上的表现优于所有其他方法。代码将提供。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
精彩活动丨AI for Graph Computation学术研讨会
图与推荐
1+阅读 · 2022年7月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
Arxiv
14+阅读 · 2019年9月11日
Arxiv
11+阅读 · 2018年9月28日
VIP会员
相关VIP内容
百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
相关基金
国家自然科学基金
12+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员