Gaussian processes are arguably the most important class of spatiotemporal models within machine learning. They encode prior information about the modeled function and can be used for exact or approximate Bayesian learning. In many applications, particularly in physical sciences and engineering, but also in areas such as geostatistics and neuroscience, invariance to symmetries is one of the most fundamental forms of prior information one can consider. The invariance of a Gaussian process' covariance to such symmetries gives rise to the most natural generalization of the concept of stationarity to such spaces. In this work, we develop constructive and practical techniques for building stationary Gaussian processes on a very large class of non-Euclidean spaces arising in the context of symmetries. Our techniques make it possible to (i) calculate covariance kernels and (ii) sample from prior and posterior Gaussian processes defined on such spaces, both in a practical manner. This work is split into two parts, each involving different technical considerations: part I studies compact spaces, while part II studies non-compact spaces possessing certain structure. Our contributions make the non-Euclidean Gaussian process models we study compatible with well-understood computational techniques available in standard Gaussian process software packages, thereby making them accessible to practitioners.
翻译:翻译后的标题:
基于李群和其齐次空间的平稳核函数和高斯过程 II:非紧凑对称空间
翻译后的摘要:
在机器学习中,高斯过程是最重要的一类时空模型。它们对所建模函数的先验信息进行编码,可以用于精确或近似贝叶斯学习。在许多应用中,特别是在物理科学和工程领域,以及地质统计学和神经科学等领域,对对称性的不变性是可以考虑的最基本的先验信息之一。高斯过程协方差对这些对称性的不变性赋予了该空间最自然的平稳性的概念。我们在这项工作中开展了构建一种平稳高斯过程在非欧几里得空间上的实用技术研究,该空间在对称性上具有某些特定的结构。我们的技术使得在此类特定结构的非欧几里得高斯过程模型中进行核函数和上下文定义的先验和后验高斯过程的采样成为可能。此项工作分为两部分,每部分都涉及不同的技术考虑:第一部分研究紧凑空间,而第二部分研究具有一定结构的非紧凑空间。我们的贡献使我们研究的非欧几里得高斯过程模型与标准高斯过程软件包中可用的良好理解的计算技术相兼容,从而使该模型对从业者易于掌握。