In task-oriented dialogue (ToD), a user holds a conversation with an artificial agent to complete a concrete task. Although this technology represents one of the central objectives of AI and has been the focus of ever more intense research and development efforts, it is currently limited to a few narrow domains (e.g., food ordering, ticket booking) and a handful of languages (e.g., English, Chinese). This work provides an extensive overview of existing methods and resources in multilingual ToD as an entry point to this exciting and emerging field. We find that the most critical factor preventing the creation of truly multilingual ToD systems is the lack of datasets in most languages for both training and evaluation. In fact, acquiring annotations or human feedback for each component of modular systems or for data-hungry end-to-end systems is expensive and tedious. Hence, state-of-the-art approaches to multilingual ToD mostly rely on (zero- or few-shot) cross-lingual transfer from resource-rich languages (almost exclusively English), either by means of machine translation or multilingual representations. These approaches are currently viable only for typologically similar languages and languages with parallel / monolingual corpora available. On the other hand, their effectiveness beyond these boundaries is doubtful or hard to assess due to the lack of linguistically diverse benchmarks (especially for natural language generation and end-to-end evaluation). To overcome this limitation, we draw parallels between components of the ToD pipeline and other NLP tasks, which can inspire solutions for learning in low-resource scenarios. Finally, we list additional challenges that multilinguality poses for related areas (such as speech and human-centred evaluation), and indicate future directions that hold promise to further expand language coverage and dialogue capabilities of current ToD systems.


翻译:在以任务为导向的对话(ToD)中,用户与一个人工代理商保持对话,以完成具体任务。虽然这一技术是AI的核心目标之一,并且一直是日益密集的研究和发展努力的重点,但目前它仅限于几个狭窄的领域(如食品订购、订票)和少数语言(如英文、中文),这项工作广泛概述了多语种的ToD的现有方法和资源,作为这个令人兴奋和新兴领域的切入点。我们发现,阻碍创建真正多语言的 ToD系统的最重要因素是缺乏大多数语言用于培训和评价的数据集。事实上,为模块系统的各个组成部分或数据饥饿端对端系统获得说明或人类反馈的费用和时髦。因此,目前对多语种的多语种方法的跨语种转移(大多为英语),或者通过机器翻译或多语种表达,这些方法目前仅对语言的低语种数据集设置数据集,而且超越语言的覆盖范围范围,而且对于同时/单语言的生成来说,这些语言的难度最终也比其他语言的难度。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Arxiv
20+阅读 · 2021年9月22日
VIP会员
相关VIP内容
零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
96+阅读 · 2020年5月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员