The spiking neural network (SNN) using leaky-integrated-and-fire (LIF) neurons has been commonly used in automatic speech recognition (ASR) tasks. However, the LIF neuron is still relatively simple compared to that in the biological brain. Further research on more types of neurons with different scales of neuronal dynamics is necessary. Here we introduce four types of neuronal dynamics to post-process the sequential patterns generated from the spiking transformer to get the complex dynamic neuron improved spiking transformer neural network (DyTr-SNN). We found that the DyTr-SNN could handle the non-toy automatic speech recognition task well, representing a lower phoneme error rate, lower computational cost, and higher robustness. These results indicate that the further cooperation of SNNs and neural dynamics at the neuron and network scales might have much in store for the future, especially on the ASR tasks.
翻译:在自动语音识别(ASR)任务中,通常使用使用泄漏综合与火灾神经元的神经神经网络(SNN),但是,与生物大脑相比,LIF神经元仍然相对简单。有必要进一步研究神经动态不同尺度的更多类型的神经神经元。我们在这里引入四种神经动态,用于处理后处理从跳动变压器产生的序列图案,以获得经过改进的复杂动态神经神经变异网络(DyTr-SNN) 。我们发现,DyTr-SNNN可以很好地处理非玩具自动语音识别任务,代表较低的电话错误率、较低的计算成本和更高的坚固度。这些结果表明,SNNN和网络规模的神经动态的进一步合作对于未来可能有很大的储存,特别是在ASR任务上。