We first extend the result of Ali and Silvey [Journal of the Royal Statistical Society: Series B, 28.1 (1966), 131-142] who first reported that any $f$-divergence between two isotropic multivariate Gaussian distributions amounts to a corresponding strictly increasing scalar function of their corresponding Mahalanobis distance. We report sufficient conditions on the standard probability density function generating a multivariate location family and the function generator $f$ in order to generalize this result. This property is useful in practice as it allows to compare exactly $f$-divergences between densities of these location families via their corresponding Mahalanobis distances, even when the $f$-divergences are not available in closed-form as it is the case, for example, for the Jensen-Shannon divergence or the total variation distance between densities of a normal location family. Second, we consider $f$-divergences between densities of multivariate scale families: We recall Ali and Silvey 's result that for normal scale families we get matrix spectral divergences, and we extend this result to densities of a scale family.
翻译:我们首先推广Ali和Silvey[皇家统计学会:系列B,28.1(1966年),131-142]的结果,Ali和Silvey首先报告说,两个异地多变高斯分布之间的任何美元差异均相当于相应的Mahalanobis距离的严格增加的卡路里功能;我们报告标准概率密度功能方面的充分条件,产生多变位置家庭,功能产生方美元,以便概括这一结果;这一属性在实践中非常有用,因为它能够通过相应的Mahalanobis距离,对这些位置家庭密度之间的确切的美元差异进行对比,即使美元差异在封闭式分布中并不可用,例如Jensen-Shannon差异或正常位置家庭密度之间的总差异距离。第二,我们认为多变规模家庭密度之间的美元差异:我们记得Ali和Silvey的结果,对于正常比例的家庭来说,我们将这种差异扩大至一个基质的基数,我们记得Ali和Silvey的结果。