In this paper, we study the L1/L2 minimization on the gradient for imaging applications. Several recent works have demonstrated that L1/L2 is better than the L1 norm when approximating the L0 norm to promote sparsity. Consequently, we postulate that applying L1/L2 on the gradient is better than the classic total variation (the L1 norm on the gradient) to enforce the sparsity of the image gradient. To verify our hypothesis, we consider a constrained formulation to reveal empirical evidence on the superiority of L1/L2 over L1 when recovering piecewise constant signals from low-frequency measurements. Numerically, we design a specific splitting scheme, under which we can prove subsequential and global convergence for the alternating direction method of multipliers (ADMM) under certain conditions. Experimentally, we demonstrate visible improvements of L1/L2 over L1 and other nonconvex regularizations for image recovery from low-frequency measurements and two medical applications of MRI and CT reconstruction. All the numerical results show the efficiency of our proposed approach.
翻译:在本文中,我们研究了关于成像应用梯度的L1/L2最小化的L1/L2。最近的一些著作表明,L1/L2在接近L0规范时优于L1规范,以促进宽度。因此,我们假设,在梯度上应用L1/L2比经典总变异(L1关于梯度的L1规范)要好,以强化图像梯度的宽度。为了核实我们的假设,我们认为,在从低频测量中恢复小频恒定信号时,在揭示L1/L2优于L1的经验性证据方面,存在一种限制性的配方。从数字上看,我们设计了一个具体的分离计划,根据该计划,我们可以证明在一定条件下对乘数的交替方向法(ADMMM)在随后和全球的趋同。实验中,我们展示了L1/L2高于L1的明显改进以及从低频测量中恢复图像的其他非convex规范,以及MRI和CT重建的两种医疗应用。所有的数字结果都表明了我们所提议的方法的效率。