We consider the problem of estimating an unknown parameter vector ${\boldsymbol \theta}\in{\mathbb R}^n$, given noisy observations ${\boldsymbol Y} = {\boldsymbol \theta}{\boldsymbol \theta}^{\top}/\sqrt{n}+{\boldsymbol Z}$ of the rank-one matrix ${\boldsymbol \theta}{\boldsymbol \theta}^{\top}$, where ${\boldsymbol Z}$ has independent Gaussian entries. When information is available about the distribution of the entries of ${\boldsymbol theta}$, spectral methods are known to be strictly sub-optimal. Past work characterized the asymptotics of the accuracy achieved by the optimal estimator. However, no polynomial-time estimator is known that achieves this accuracy. It has been conjectured that this statistical-computation gap is fundamental, and moreover that the optimal accuracy achievable by polynomial-time estimators coincides with the accuracy achieved by certain approximate message passing (AMP) algorithms. We provide evidence towards this conjecture by proving that no estimator in the (broader) class of constant-degree polynomials can surpass AMP.
翻译:我们考虑了估算一个未知参数矢量 $[boldsymbol\\\thetheta}/\ sqrt{n\\\boldsymbol\ $(boldsymbol\\\\theta}}_mathththbbbrbR$$ 美元的问题,因为当有关于$(boldsymbol Y}) 条目的分布的信息时,光谱方法是绝对亚最佳的。过去的工作描述的是,最优估量仪所实现的精确度的无符号性。然而,没有已知的多位调时估测仪能够达到这一准确度。人们推测,这个统计-估计差距是基本的,此外,如果有关于$(boldsysymbol theta}) 条目分布的信息,那么光谱方法是绝对的亚优的。