We provide a computationally and statistically efficient method for estimating the parameters of a stochastic covariance model observed on a regular spatial grid in any number of dimensions. Our proposed method, which we call the Debiased Spatial Whittle likelihood, makes important corrections to the well-known Whittle likelihood to account for large sources of bias caused by boundary effects and aliasing. We generalise the approach to flexibly allow for significant volumes of missing data including those with lower-dimensional substructure, and for irregular sampling boundaries. We build a theoretical framework under relatively weak assumptions which ensures consistency and asymptotic normality in numerous practical settings including missing data and non-Gaussian processes. We also extend our consistency results to multivariate processes. We provide detailed implementation guidelines which ensure the estimation procedure can be conducted in O(n log n) operations, where n is the number of points of the encapsulating rectangular grid, thus keeping the computational scalability of Fourier and Whittle-based methods for large data sets. We validate our procedure over a range of simulated and real-world settings, and compare with state-of-the-art alternatives, demonstrating the enduring practical appeal of Fourier-based methods, provided they are corrected by the procedures developed in this paper.
翻译:我们提供了一种计算和统计上有效的方法,用以估计在正常空间网格上观察到的任何多个维度的正常空间网格上观察到的随机共变模型的参数。我们建议的方法,即我们称之为“低偏差空间Whittter可能性”的方法,对众所周知的惠特尔解释边界效应和别名造成的大量偏差来源的可能性作了重要更正。我们概括了灵活允许大量缺失数据的方法,包括低维次结构数据,以及非常规抽样边界数据。我们在相对薄弱的假设下建立了一个理论框架,确保许多实际环境中的一致性和无损常性,包括缺少的数据和非加西语进程。我们还将我们的一致性结果扩大到多种变异过程。我们提供了详细的执行准则,确保估算程序可以在O(nlog n)操作中进行,这里是封装矩格网的点数,从而保持以四面和惠特尔为基础的方法对大型数据集的计算可缩度。我们验证了在一系列模拟和现实世界环境中的程序,并且与状态的正常正常性正常性。我们还提供了四种实际的替代方法,通过这种实际的替代方法来论证。