Retrieval-augmented in-context learning has emerged as a powerful approach for addressing knowledge-intensive tasks using frozen language models (LM) and retrieval models (RM). Existing work has combined these in simple "retrieve-then-read" pipelines in which the RM retrieves passages that are inserted into the LM prompt. To begin to fully realize the potential of frozen LMs and RMs, we propose Demonstrate-Search-Predict (DSP), a framework that relies on passing natural language texts in sophisticated pipelines between an LM and an RM. DSP can express high-level programs that bootstrap pipeline-aware demonstrations, search for relevant passages, and generate grounded predictions, systematically breaking down problems into small transformations that the LM and RM can handle more reliably. We have written novel DSP programs for answering questions in open-domain, multi-hop, and conversational settings, establishing in early evaluations new state-of-the-art in-context learning results and delivering 37-200%, 8-40%, and 80-290% relative gains against vanilla LMs, a standard retrieve-then-read pipeline, and a contemporaneous self-ask pipeline, respectively.
翻译:在使用冻结语言模型和检索模型(RM)处理知识密集型任务方面,现有工作已经将这些合并到简单的“检索即读”管道中,使RM检索进入LM快速时插入的通道。为了开始充分实现冻结的LM和RM的潜力,我们提议示范-搜索-定位平台(DSP),这是一个依靠在LM和RM之间的复杂管道管道中通过自然语言文本的流传自然语言文本的架构。 DSP可以表达高层次方案,这些高层次方案包括:在管道-管道示范演示、寻找相关通道和产生有根据的预测,系统地将问题分为小变小的“检索-读”管道,以便LMM和RM能够更可靠地处理这些小变小的管道。我们已编写了新的DSP方案,在开放区、多光和对话环境中回答问题,在早期评价中建立新状态的理论学习结果,并交付37-200 %、8-40%和80-290%的高级方案,针对输管-输油管-LMS、标准检索和相对收益。