Sea surface height (SSH) is a key geophysical parameter for monitoring and studying meso-scale surface ocean dynamics. For several decades, the mapping of SSH products at regional and global scales has relied on nadir satellite altimeters, which provide one-dimensional-only along-track satellite observations of the SSH. The Surface Water and Ocean Topography (SWOT) mission deploys a new sensor that acquires for the first time wide-swath two-dimensional observations of the SSH. This provides new means to observe the ocean at previously unresolved spatial scales. A critical challenge for the exploiting of SWOT data is the separation of the SSH from other signals present in the observations. In this paper, we propose a novel learning-based approach for this SWOT calibration problem. It benefits from calibrated nadir altimetry products and a scale-space decomposition adapted to SWOT swath geometry and the structure of the different processes in play. In a supervised setting, our method reaches the state-of-the-art residual error of ~1.4cm while proposing a correction on the entire spectral from 10km to 1000k
翻译:海面高度(SSH)是监测和研究中尺度海面动态的关键地球物理参数。几十年来,区域和全球范围内SSH产品的测绘依靠NAdir卫星测高仪,该测高仪提供了SSH卫星的单维沿轨卫星观测。地表水和海洋地形(SWOT)飞行任务部署了一个新的传感器,首次获得SSH的宽度两维观测。这为在先前尚未解决的空间尺度上观测海洋提供了新的手段。利用SWOT数据的一个关键挑战是将SSH数据与观测中的其他信号分离。在本文件中,我们提议对SWOT校准问题采取新的基于学习的方法。它得益于经校准的NAdir测高时制产品和适应SWOT Swath测高仪和不同运行过程结构的尺度空间分解装置。在受监督的环境下,我们的方法达到了~1.4厘米的状态残余误差,同时提议对整个光谱从10公里到1000公里的整光谱进行校正。