We propose a novel framework to learn the spatiotemporal variability in longitudinal 3D shape data sets, which contain observations of objects that evolve and deform over time. This problem is challenging since surfaces come with arbitrary parameterizations and thus, they need to be spatially registered. Also, different deforming objects, also called 4D surfaces, evolve at different speeds and thus they need to be temporally aligned. We solve this spatiotemporal registration problem using a Riemannian approach. We treat a 3D surface as a point in a shape space equipped with an elastic Riemannian metric that measures the amount of bending and stretching that the surfaces undergo. A 4D surface can then be seen as a trajectory in this space. With this formulation, the statistical analysis of 4D surfaces can be cast as the problem of analyzing trajectories embedded in a nonlinear Riemannian manifold. However, performing the spatiotemporal registration, and subsequently computing statistics, on such nonlinear spaces is not straightforward as they rely on complex nonlinear optimizations. Our core contribution is the mapping of the surfaces to the space of Square-Root Normal Fields where the L2 metric is equivalent to the partial elastic metric in the space of surfaces. Thus, by solving the spatial registration in the SRNF space, the problem of analyzing 4D surfaces becomes the problem of analyzing trajectories embedded in the SRNF space, which has a Euclidean structure. In this paper, we develop the building blocks that enable such analysis. These include: (1) the spatiotemporal registration of arbitrarily parameterized 4D surfaces in the presence of large elastic deformations and large variations in their execution rates; (2) the computation of geodesics between 4D surfaces; (3) the computation of statistical summaries; and (4) the synthesis of random 4D surfaces.
翻译:我们提出了一个新框架, 用于学习长垂直 3D 形状数据集的上层时空变异性, 其中包括对时间进化和变形物体的观测。 这个问题具有挑战性, 因为表面随任意参数化而出现, 因此需要进行空间登记。 此外, 不同的变形物体, 也称为 4D 表面, 以不同的速度演变, 因此它们需要时间上调。 我们用Riemannian 的方法来解决这个时空登记问题。 我们把3D 表面当作一个形状空间中的点, 配有弹性的 Riemann 度度量测量表层弯曲和伸展量的量。 4D 表面表面的变形分析, 4D 地面的变形分析, 地面的变形变形分析, 地面的变形分析, 地面的变形分析, 地面的变形分析, 地面的变形分析, 地面的变形分析, 地面的变形, 地面的变形分析, 地面的变形, 地面的变形, 地面的变形, 的变形, 地面的变形, 的变形, 地面的变形分析, 的变形, 方向的变形, 地面的变形, 方向的变形, 方向的变形的变形的变形的变形的变形的变形, 流的变形的变形的变形, 的变形的变形, 的变形, 的变形, 的变形的变形, 方向, 的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形的变形, 的变形的变形的变形的变形的变形的变形的变形, 的变形, 的变形, 的变形, 的变形, 的变形, 的变形, 的变形, 的变形的变形的变形, 的变形, 的变形的变形的变形, 的变的变形, 的变形的变形的变形的变形的变形的变形, 的变形, 的变形, 的变形的变形,