Combinatorial optimization on near-term quantum devices is a promising path to demonstrating quantum advantage. However, the capabilities of these devices are constrained by high noise or error rates. In this paper, we propose an iterative Layer VQE (L-VQE) approach, inspired by the Variational Quantum Eigensolver (VQE). We present a large-scale numerical study, simulating circuits with up to 40 qubits and 352 parameters, that demonstrates the potential of the proposed approach. We evaluate quantum optimization heuristics on the problem of detecting multiple communities in networks, for which we introduce a novel qubit-frugal formulation. We numerically compare L-VQE with Quantum Approximate Optimization Algorithm (QAOA) and demonstrate that QAOA achieves lower approximation ratios while requiring significantly deeper circuits. We show that L-VQE is more robust to finite sampling errors and has a higher chance of finding the solution as compared with standard VQE approaches. Our simulation results show that L-VQE performs well under realistic hardware noise.


翻译:短期量子装置的组合优化是展示量子优势的一条有希望的道路。然而,这些装置的能力受到高噪音或错误率的制约。在本文件中,我们提议了一种迭代层VQE (L-VQE) 方法,该方法受量子装置量子优化的启发。我们提出了一个大规模的数字研究,模拟了高达40平方和352参数的电路,展示了拟议方法的潜力。我们评估了在网络中探测多个社区的问题的量子优化超常性,为此我们采用了新型的qubit-froducal配方。我们用数字比较了L-VQE与Quantum Aphimizal Agorithm (QAOA) 的方法,并证明QAOA的近似率较低,同时需要大大加深的电路路段。我们显示,L-VQE比标准的VQE方法更坚固,并更有可能找到解决办法。我们的模拟结果表明,L-VQE在现实的硬件下运行良好。

0
下载
关闭预览

相关内容

元强化学习综述及前沿进展
专知会员服务
61+阅读 · 2021年1月31日
专知会员服务
52+阅读 · 2020年9月7日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月13日
Arxiv
6+阅读 · 2020年10月8日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员