Instrumental variable methods are among the most commonly used causal inference approaches to account for unmeasured confounders in observational studies. The presence of invalid instruments is a major concern for practical applications and a fast-growing area of research is inference for the causal effect with possibly invalid instruments. The existing inference methods rely on correctly separating valid and invalid instruments in a data dependent way. In this paper, we illustrate post-selection problems of these existing methods. We construct uniformly valid confidence intervals for the causal effect, which are robust to the mistakes in separating valid and invalid instruments. Our proposal is to search for the causal effect such that a sufficient amount of candidate instruments can be taken as valid. We further devise a novel sampling method, which, together with searching, lead to a more precise confidence interval. Our proposed searching and sampling confidence intervals are shown to be uniformly valid under the finite-sample majority and plurality rules. We compare our proposed methods with existing inference methods over a large set of simulation studies and apply them to study the effect of the triglyceride level on the glucose level over a mouse data set.
翻译:仪器变量方法是最常用的因果推断方法,用于计算观察研究中未计量的混淆者。无效仪器的存在是实际应用的主要关切,而快速增长的研究领域是可能无效的仪器的因果关系的推断。现有的推断方法依靠以数据依赖的方式正确区分有效和无效的仪器。在本文件中,我们举例说明这些现有方法的选后问题。我们为因果关系构建了统一有效的信任间隔,这些间隔对于分离有效无效仪器的错误是可靠的。我们的建议是寻找因果关系,以便将足够数量的候选仪器视为有效。我们进一步设计了一种新的取样方法,与搜索一起,导致更精确的置信间隔。我们提议的搜索和取样信任间隔在限定抽样多数和多元规则下证明是统一的。我们比较了我们所提议的方法与大量模拟研究的现有推断方法,并运用这些方法来研究老鼠数据集的三重采样水平对葡萄水平的影响。