We introduce a new Vietoris-type hypertopology by means of the upper-Vietoris-type hypertopology defined by G. Dimov and D. Vakarelov [On Scott consequence systems, Fundamenta Informaticae, 33 (1998), 43-70] (it was called there {\em Tychonoff-type hypertopology}) and the lower-Vietoris-type hypertopology introduced by E. Ivanova-Dimova [Lower-Vietoris-type topologies on hyperspaces, Topology Appl. (to appear)]. We study this new Vietoris-type hypertopology and show that it is, in general, different from the Vietoris topology. Also, some of the results of E. Michael [Topologies on spaces of subsets, Trans. Amer. Math. Soc. 71 (1951), 152-182] about hyperspaces with Vietoris topology are extended to analogous results for hyperspaces with Vietoris-type topology. We obtain as well some results about hyperspaces with Vietoris-type topology which concern some problems analogous to those regarded by H.-J. Schmidt [Hyperspaces of quotient and subspaces. I. Hausdorff topological spaces, Math. Nachr. 104 (1981), 271-280].
翻译:我们采用由G. Dimov和D. Vakarelov[关于斯科特后果系统,Informaticae Fundamenta Informaticae, 33 (1998), 43-70](称为Tychonoff ytoptotology])定义的上越洋类型的超地形学和由E. Ivanova-Dimova(1951)和152-182引进的较低越洋类型的超地形学新引进的越洋类型的超地形学。我们研究了这种新的越洋类型的超地形学,并表明它总的来说不同于越洋的地形学。此外,E. Michael(关于子体空间的研究,Trans. Amer. Math. Soc. 71(1951),152-182)关于越洋地表学超新空间的一些结果也扩大到与越洋类型的超空空间相似的结果。 我们从越洋的超空空间获得一些结果,与越洋的顶层的高层和北陆基的高层空间有关。