Is Fully Polynomial-time Randomized Approximation Scheme (FPRAS) for a problem via an MCMC algorithm possible when it is known that rapid mixing provably fails? We introduce several weight-preserving maps for the eight-vertex model on planar and on bipartite graphs, respectively. Some are one-to-one, while others are holographic which map superpositions of exponentially many states from one setting to another, in a quantum-like many-to-many fashion. In fact we introduce a set of such mappings that forms a group in each case. Using some holographic maps and their compositions we obtain FPRAS for the eight-vertex model at parameter settings where it is known that rapid mixing provably fails due to an intrinsic barrier. This FPRAS is indeed the same MCMC algorithm, except its state space corresponds to superpositions of the given states, where rapid mixing holds. FPRAS is also given for torus graphs for parameter settings where natural Markov chains are known to mix torpidly. Our results show that the eight-vertex model is the first problem with the provable property that while NP-hard to approximate on general graphs (even #P-hard for planar graphs in exact complexity), it possesses FPRAS on both bipartite graphs and planar graphs in substantial regions of its parameter space.
翻译:在已知快速混合的快速混合失败的情况下,完全的聚合-时间随机随机匹配计划(PFRAS)能否通过一个MCMC算法(MMC 算法)解决一个问题? 我们为Plantar和双partite图形上的8个顶点模型分别引入了几张权重保存地图。 有些是一对一的地图, 而另一些则是全息地图, 以量数相似的多到多成多成多的方式, 绘制从一个位置到另一个位置的指数性许多国家的叠加。 事实上, 我们引入了一组这样的地图, 在每个案例中组成一个群体。 我们使用一些全息地图及其构成, 我们为参数设置的8个垂直模型获取了 FPRAS 。 在参数设置中, 已知快速混合因内在屏障而导致快速混合的8个顶点模型失败。 FPRAS 的八点图性图性图性图性图性图性图性图性图性图性是其正反正数的图性图性图性。 我们的八点图性图性图性图性图性图性图性图性图性图性图性图性图性图性图性图性图。