Radio-astronomical observations are increasingly contaminated by interference, and suppression techniques become essential. A powerful candidate for interference mitigation is adaptive spatial filtering. We study the effect of spatial filtering techniques on radio astronomical imaging. Current deconvolution procedures such as CLEAN are shown to be unsuitable to spatially filtered data, and the necessary corrections are derived. To that end, we reformulate the imaging (deconvolution/calibration) process as a sequential estimation of the locations of astronomical sources. This not only leads to an extended CLEAN algorithm, the formulation also allows to insert other array signal processing techniques for direction finding, and gives estimates of the expected image quality and the amount of interference suppression that can be achieved. Finally, a maximum likelihood procedure for the imaging is derived, and an approximate ML image formation technique is proposed to overcome the computational burden involved. Some of the effects of the new algorithms are shown in simulated images. Keywords: Radio astronomy, synthesis imaging, parametric imaging, interference mitigation, spatial filtering, maximum likelihood, minimum variance, CLEAN.


翻译:无线电天文观测日益受到干扰,抑制技术变得至关重要。一个强大的干扰缓解选择是适应性空间过滤。我们研究空间过滤技术对射电天文成像的影响。目前的变异程序,如CLEAN,被证明不适合空间过滤数据,并得出必要的更正。为此,我们重新配置成像(变异/校正)过程,作为对天文来源位置的顺序估计。这不仅导致扩展的CLEAN算法,这种配方还允许插入其他阵列信号处理技术,以查找方向,并估计预期的图像质量和可达到的干扰抑制程度。最后,将产生一个最大可能性的成像程序,并提出近似ML成像技术以克服所涉计算负担。在模拟图像中显示了新算法的某些影响。关键词是:无线电天文学、合成成像、参数成像、干扰减缓、空间过滤、最大可能性、最小差异、CLEANEAN。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
Learning to Importance Sample in Primary Sample Space
Arxiv
5+阅读 · 2018年5月1日
Arxiv
4+阅读 · 2017年11月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员