Quantum neural networks are promising for a wide range of applications in the Noisy Intermediate-Scale Quantum era. As such, there is an increasing demand for automatic quantum neural architecture search. We tackle this challenge by designing a quantum circuits metric for Bayesian optimization with Gaussian process. To this goal, we propose a new quantum gates distance that characterizes the gates' action over every quantum state and provide a theoretical perspective on its geometrical properties. Our approach significantly outperforms the benchmark on three empirical quantum machine learning problems including training a quantum generative adversarial network, solving combinatorial optimization in the MaxCut problem, and simulating quantum Fourier transform. Our method can be extended to characterize behaviors of various quantum machine learning models.
翻译:量子神经网络对新中度量子量子时代的广泛应用很有希望。 因此,对自动量子神经结构的搜索需求不断增加。 我们通过设计一个用高森进程优化巴伊西亚的量子电路测量标准来应对这一挑战。 为此,我们提议了一个新的量子门距离,以描述每个量子状态的门动作,并提供关于其几何特性的理论视角。 我们的方法大大优于三个实验性量子机器学习问题的基准,包括培训量子基因对抗网络、解决MaxCut问题的组合优化以及模拟量子四倍变形。 我们的方法可以扩大到描述各种量子机器学习模型的行为。