Tensor Core is a mixed-precision matrix-matrix multiplication unit on NVIDIA GPUs with a theoretical peak performance of more than 300 TFlop/s on Ampere architectures. Tensor Cores were developed in response to the high demand of dense matrix multiplication from machine learning. However, many applications in scientific computing such as preconditioners for iterative solvers and low-precision Fourier transforms can exploit these Tensor Cores. To compute a matrix multiplication on Tensor Cores, we need to convert input matrices to half-precision, which results in loss of accuracy. To avoid this, we can keep the mantissa loss in the conversion using additional half-precision variables and use them for correcting the accuracy of matrix-matrix multiplication. Even with this correction, the use of Tensor Cores yields higher throughput compared to FP32 SIMT Cores. Nevertheless, the correcting capability of this method alone is limited, and the resulting accuracy cannot match that of a matrix multiplication on FP32 SIMT Cores. We address this problem and develop a high accuracy, high performance, and low power consumption matrix-matrix multiplication implementation using Tensor Cores, which exactly matches the accuracy of FP32 SIMT Cores while achieving superior throughput. The implementation is based on NVIDIA's CUTLASS. We found that the key to achieving this accuracy is how to deal with the rounding inside Tensor Cores and underflow probability during the correction computation. Our implementation achieves 51TFlop/s for a limited exponent range using FP16 Tensor Cores and 33TFlop/s for full exponent range of FP32 using TF32 Tensor Cores on NVIDIA A100 GPUs, which outperforms the theoretical FP32 SIMT Core peak performance of 19.5TFlop/s.


翻译:光谱核心是一个混合精密矩阵矩阵矩阵矩阵化乘数单位, 它在 NVIDIA GPU 上, 理论峰值性能在 Ampere 结构上超过 300 TFlop/s。 光谱核心是针对机器学习中密集矩阵倍增的高需求而开发的。 然而, 许多科学计算应用, 如迭代解答器的先决条件和低精度 Fleier 变换, 可以利用这些Tesor核心。 要计算 Tansor Corecor Cores 的矩阵乘数乘数, 我们需要将输入矩阵转换成半精确度, 从而导致准确性下降。 要避免这一点, 我们可以使用额外的半精度变量来保持曼特萨的转换损失, 并使用它们来纠正模型矩阵乘数的精度。 但是, 仅此方法的校正能力是有限的, 因此, IMFC IMTFFC 核心的计算结果无法匹配半精度。 我们使用这个问题, 并且通过IMFS IM IM 实现高精度执行, IMFS 的精度, IMFLLLLM 。

0
下载
关闭预览

相关内容

机器学习系统设计系统评估标准
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员