A sum-product network (SPN) is a graphical model that allows several types of inferences to be drawn efficiently. There are two types of learning for SPNs: Learning the architecture of the model, and learning the parameters. In this paper, we tackle the second problem: We show how to learn the weights for the sum nodes, assuming the architecture is fixed, and the data is horizontally partitioned between multiple parties. The computations will preserve the privacy of each participant. Furthermore, we will use secret sharing instead of (homomorphic) encryption, which allows fast computations and requires little computational resources. To this end, we use a novel integer division to compute approximate real divisions. We also show how simple and private inferences can be performed using the learned SPN.
翻译:产品总和网络( SPN) 是一个图形模型, 能够有效地绘制几种类型的推论。 对于 SPN 来说, 有两种类型的学习方式: 学习模型结构, 学习参数。 在本文中, 我们处理第二个问题 : 我们展示如何学习总和节点的权重, 假设结构是固定的, 数据在多个当事人之间横向分割 。 计算将保护每个参与者的隐私 。 此外, 我们将使用秘密共享, 而不是( modrophic) 加密, 这可以快速计算, 并且不需要多少计算资源 。 为此, 我们使用新的整数分割法来计算大致的真分数 。 我们还展示如何使用学习的 SPN 进行简单和私人的推论 。