One of the core envisions of the sixth-generation (6G) wireless networks is to accumulate artificial intelligence (AI) for autonomous controlling of the Internet of Everything (IoE). Particularly, the quality of IoE services delivery must be maintained by analyzing contextual metrics of IoE such as people, data, process, and things. However, the challenges incorporate when the AI model conceives a lake of interpretation and intuition to the network service provider. Therefore, this paper provides an explainable artificial intelligence (XAI) framework for quality-aware IoE service delivery that enables both intelligence and interpretation. First, a problem of quality-aware IoE service delivery is formulated by taking into account network dynamics and contextual metrics of IoE, where the objective is to maximize the channel quality index (CQI) of each IoE service user. Second, a regression problem is devised to solve the formulated problem, where explainable coefficients of the contextual matrices are estimated by Shapley value interpretation. Third, the XAI-enabled quality-aware IoE service delivery algorithm is implemented by employing ensemble-based regression models for ensuring the interpretation of contextual relationships among the matrices to reconfigure network parameters. Finally, the experiment results show that the uplink improvement rate becomes 42.43% and 16.32% for the AdaBoost and Extra Trees, respectively, while the downlink improvement rate reaches up to 28.57% and 14.29%. However, the AdaBoost-based approach cannot maintain the CQI of IoE service users. Therefore, the proposed Extra Trees-based regression model shows significant performance gain for mitigating the trade-off between accuracy and interpretability than other baselines.


翻译:第六代(6G)无线网络的核心设想之一是为自主控制一切的互联网(IoE)而积累人工智能(AI),以自动控制一切的互联网(IoE)。特别是,通过分析IoE的背景度量,如人、数据、进程等,必须保持IoE服务的质量。然而,当AI模型为网络服务供应商设想一个解释和直觉的湖时,挑战就包含在内。因此,本文件为质量认知的 IoE服务交付提供了一个可解释的人工智能(XAI)框架,既能提供情报,也能提供解释。首先,质量认知的 IoE服务交付问题通过考虑到IoE的网络动态和背景度量度,通过分析IoE的网络动态和背景度度量度,以尽量扩大每个IoE服务用户的频道质量指数(CQI)。 其次,回归问题是要解决已形成的问题,根据Shapley 值解释,可以解释的背景矩阵的系数。第三,基于XAI的基于质量的IoE服务交付算法,通过使用基于模型的Ad-Adal-realoros的IoE 服务交付算法,通过使用Adal-real-real-real religild elus laxmoration maxlationalational 来实施一个基于C.

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
27+阅读 · 2022年2月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2022年2月15日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员