Reinforcement learning (RL) is a promising approach and has limited success towards real-world applications, because ensuring safe exploration or facilitating adequate exploitation is a challenges for controlling robotic systems with unknown models and measurement uncertainties. Such a learning problem becomes even more intractable for complex tasks over continuous space (state-space and action-space). In this paper, we propose a learning-based control framework consisting of several aspects: (1) linear temporal logic (LTL) is leveraged to facilitate complex tasks over an infinite horizons which can be translated to a novel automaton structure; (2) we propose an innovative reward scheme for RL-agent with the formal guarantee such that global optimal policies maximize the probability of satisfying the LTL specifications; (3) based on a reward shaping technique, we develop a modular policy-gradient architecture utilizing the benefits of automaton structures to decompose overall tasks and facilitate the performance of learned controllers; (4) by incorporating Gaussian Processes (GPs) to estimate the uncertain dynamic systems, we synthesize a model-based safeguard using Exponential Control Barrier Functions (ECBFs) to address problems with high-order relative degrees. In addition, we utilize the properties of LTL automatons and ECBFs to construct a guiding process to further improve the efficiency of exploration. Finally, we demonstrate the effectiveness of the framework via several robotic environments. And we show such an ECBF-based modular deep RL algorithm achieves near-perfect success rates and guard safety with a high probability confidence during training.


翻译:强化学习(RL)是一个很有希望的方法,在现实世界应用方面取得的成功有限,因为确保安全探索或促进适当开发是控制具有未知模型和测量不确定性的机器人系统的挑战,这种学习问题在连续空间(状态空间和动作空间)的复杂任务方面变得更加棘手。在本文件中,我们提议一个学习控制框架,包括几个方面:(1) 利用线性时间逻辑(LTL),在一个无限的视野上推动复杂的任务,可以转化为新的自动结构;(2) 我们提议为RL试剂制定创新奖励计划,正式保证全球最佳政策最大限度地提高满足LTL规格的可能性;(3) 以奖励塑造技术为基础,我们开发一个模块化政策梯度结构,利用自动马顿结构的好处拆分解总体任务,便利学习控制员的绩效;(4) 利用Gaussian Processes(GPs)来评估不确定的动态系统,我们综合了基于模型的保障,利用深度控制障碍功能(ECBFs),以近于一定的相对程度解决问题。此外,我们利用LBR-R-R-R-R-R-Acal-Acal-L-Acal-Acal-Acal-Acal-L-L-ATI-S-S-S-Ax-Ax-Ax-SL-S-S-S-S-S-S-S-S-S-L-S-A-A-A-A-A-A-A-A-A-A-A-A-Ac-S-Acal-S-S-A-Acal-Acal-S-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月26日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
47+阅读 · 2021年1月20日
深度强化学习策略梯度教程,53页ppt
专知会员服务
176+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
25+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员