Transfer Learning has shown great potential to enhance single-agent Reinforcement Learning (RL) efficiency. Similarly, Multiagent RL (MARL) can also be accelerated if agents can share knowledge with each other. However, it remains a problem of how an agent should learn from other agents. In this paper, we propose a novel Multiagent Policy Transfer Framework (MAPTF) to improve MARL efficiency. MAPTF learns which agent's policy is the best to reuse for each agent and when to terminate it by modeling multiagent policy transfer as the option learning problem. Furthermore, in practice, the option module can only collect all agent's local experiences for update due to the partial observability of the environment. While in this setting, each agent's experience may be inconsistent with each other, which may cause the inaccuracy and oscillation of the option-value's estimation. Therefore, we propose a novel option learning algorithm, the successor representation option learning to solve it by decoupling the environment dynamics from rewards and learning the option-value under each agent's preference. MAPTF can be easily combined with existing deep RL and MARL approaches, and experimental results show it significantly boosts the performance of existing methods in both discrete and continuous state spaces.


翻译:同样,如果代理商能够相互交流知识,多试剂RL(MARL)也可以加快速度。然而,这仍然是一个问题,即代理商应当如何向其他代理商学习。在本文件中,我们提出了一个新的多试剂政策转让框架(MAPTF),以提高MARL效率。MAPTF了解了哪种代理商政策是每个代理商最佳的再利用,何时通过模拟多试剂政策转让作为备选学习问题来终止该政策转让。此外,在实践中,由于环境的局部可耐性,该选项模块只能收集所有代理商的当地更新经验。在这一背景下,每个代理商的经验可能相互不一致,这可能造成选择价值估计的不准确性和振荡。因此,我们提出了一种新的备选学习算法,通过将环境动态与每个代理商的奖励和学习选择价值脱钩,从而解决后代代表选项。MARLTF可以很容易地与现有的深度RL和离散性业绩和实验结果相结合。

0
下载
关闭预览

相关内容

元学习(meta learning) 最新进展综述论文
专知会员服务
276+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
8+阅读 · 2021年5月21日
Arxiv
4+阅读 · 2020年3月19日
Arxiv
3+阅读 · 2018年10月5日
Hierarchical Deep Multiagent Reinforcement Learning
Arxiv
8+阅读 · 2018年9月25日
A Multi-Objective Deep Reinforcement Learning Framework
Arxiv
5+阅读 · 2018年6月12日
VIP会员
相关VIP内容
元学习(meta learning) 最新进展综述论文
专知会员服务
276+阅读 · 2020年5月8日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
【强化学习资源集合】Awesome Reinforcement Learning
专知会员服务
93+阅读 · 2019年12月23日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
169+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Reinforcement Learning: An Introduction 2018第二版 500页
CreateAMind
11+阅读 · 2018年4月27日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Top
微信扫码咨询专知VIP会员