Learning with noisy labels is a vital topic for practical deep learning as models should be robust to noisy open-world datasets in the wild. The state-of-the-art noisy label learning approach JoCoR fails when faced with a large ratio of noisy labels. Moreover, selecting small-loss samples can also cause error accumulation as once the noisy samples are mistakenly selected as small-loss samples, they are more likely to be selected again. In this paper, we try to deal with error accumulation in noisy label learning from both model and data perspectives. We introduce mean point ensemble to utilize a more robust loss function and more information from unselected samples to reduce error accumulation from the model perspective. Furthermore, as the flip images have the same semantic meaning as the original images, we select small-loss samples according to the loss values of flip images instead of the original ones to reduce error accumulation from the data perspective. Extensive experiments on CIFAR-10, CIFAR-100, and large-scale Clothing1M show that our method outperforms state-of-the-art noisy label learning methods with different levels of label noise. Our method can also be seamlessly combined with other noisy label learning methods to further improve their performance and generalize well to other tasks. The code is available in https://github.com/zyh-uaiaaaa/MDA-noisy-label-learning.
翻译:使用噪音标签进行学习是实实在在的深层学习的重要话题, 因为模型应该对野生地区吵闹的开放世界数据集非常强大。 最先进的吵闹的标签学习方法 JoCoR 在面对大比例的吵吵闹标签时失败。 此外, 选择小损失样本还可能造成错误积累, 因为当噪音样本被错误地选为小损失样本时, 它们更有可能再次被选中。 在本文中, 我们试图从模型和数据的角度来处理噪音标签学习中的错误积累问题。 我们引入了暗点组合, 以便利用更强大的丢失功能和来自未选样本的更多信息来减少从模型角度的错误积累。 此外, 由于翻动图像具有与原始图像相同的语义含义, 我们选择小损失样本时, 也会根据翻动图像的损失值而不是原始样本来选择, 从而从数据角度减少错误累积。 在 CFAR- 10、 CIFAR- 100 和 大型Smarin1MM 中进行的广泛实验显示我们的方法超越了状态的噪音标签学习方法, 用不同等级的标签噪音来减少错误。 我们的方法也可以将其它的标签/ 。 我们的方法与其他的标签混为同一学习方法, 。