Autonomous Vehicles (AVs) increasingly use LiDAR-based object detection systems to perceive other vehicles and pedestrians on the road. While existing attacks on LiDAR-based autonomous driving architectures focus on lowering the confidence score of AV object detection models to induce obstacle misdetection, our research discovers how to leverage laser-based spoofing techniques to selectively remove the LiDAR point cloud data of genuine obstacles at the sensor level before being used as input to the AV perception. The ablation of this critical LiDAR information causes autonomous driving obstacle detectors to fail to identify and locate obstacles and, consequently, induces AVs to make dangerous automatic driving decisions. In this paper, we present a method invisible to the human eye that hides objects and deceives autonomous vehicles' obstacle detectors by exploiting inherent automatic transformation and filtering processes of LiDAR sensor data integrated with autonomous driving frameworks. We call such attacks Physical Removal Attacks (PRA), and we demonstrate their effectiveness against three popular AV obstacle detectors (Apollo, Autoware, PointPillars), and we achieve 45{\deg} attack capability. We evaluate the attack impact on three fusion models (Frustum-ConvNet, AVOD, and Integrated-Semantic Level Fusion) and the consequences on the driving decision using LGSVL, an industry-grade simulator. In our moving vehicle scenarios, we achieve a 92.7% success rate removing 90% of a target obstacle's cloud points. Finally, we demonstrate the attack's success against two popular defenses against spoofing and object hiding attacks and discuss two enhanced defense strategies to mitigate our attack.
翻译:自动机动车辆(AV)越来越多地使用以LIDAR为基础的天体探测系统来感知路上的其他车辆和行人。虽然目前对LIDAR的自主驾驶结构的攻击侧重于降低AV物体探测模型的可信度分,以诱导发现障碍,但我们的研究发现,如何利用激光测谎技术来利用激光测谎技术有选择地删除LIDAR点云数据,从而在传感器一级有选择地删除LIDAR点云数据,然后才用作对AV感知的输入。这一关键的LIDAR信息崩溃导致自动驱动障碍探测器无法识别和定位障碍,从而促使AVDAR的自动驾驶结构作出危险的自动驾驶决定。在本文中,我们展示了一种看不见的方法,隐藏了物体和自动测距模型,隐藏了与自动驱动框架相结合的LDAR传感器数据的固有自动转换和过滤过程。我们称这种攻击是物理清除成功攻击,我们展示了三种流行的AVAV级障碍探测器(Apolo、Autware、PpointPillars)的效能,我们实现了45的天体攻击能力。我们用SVDLLLAVS的定位定位定位模型来评估了三种攻击速度。我们攻击等级和LVRILULAVL的升级的升级。我们用AVR的动作模型来显示了一种攻击速度和潜变压。