Long-term autonomy is one of the most demanded capabilities looked into a robot. The possibility to perform the same task over and over on a long temporal horizon, offering a high standard of reproducibility and robustness, is appealing. Long-term autonomy can play a crucial role in the adoption of robotics systems for precision agriculture, for example in assisting humans in monitoring and harvesting crops in a large orchard. With this scope in mind, we report an ongoing effort in the long-term deployment of an autonomous mobile robot in a vineyard for data collection across multiple months. The main aim is to collect data from the same area at different points in time so to be able to analyse the impact of the environmental changes in the mapping and localisation tasks. In this work, we present a map-based localisation study taking 4 data sessions. We identify expected failures when the pre-built map visually differs from the environment's current appearance and we anticipate LTS-Net, a solution pointed at extracting stable temporal features for improving long-term 4D localisation results.
翻译:长期自主是研究机器人的最需要的能力之一。 长期自主是长期执行同样任务,提供高水平的再复制和稳健性,具有吸引力。 长期自主在采用机械系统用于精密农业方面可以发挥关键作用,例如协助人类在大型果园中监测和收获作物。 考虑到这一范围,我们报告在葡萄园长期部署自主移动机器人以收集数月的数据。 其主要目的是在不同的时间点从同一地区收集数据,以便能够分析环境变化对绘图和本地化任务的影响。 在这项工作中,我们提出一个基于地图的本地化研究,进行4次数据会议。 我们发现预建的地图与目前环境外观不同时,我们预计LTS-Net会失败,这是为改进长期 4D 本地化结果而提取稳定时间特征的一个解决方案。