Many natural language related applications involve text generation, created by humans or machines. While in many of those applications machines support humans, yet in few others, (e.g. adversarial machine learning, social bots and trolls) machines try to impersonate humans. In this scope, we proposed and evaluated several mutation-based text generation approaches. Unlike machine-based generated text, mutation-based generated text needs human text samples as inputs. We showed examples of mutation operators but this work can be extended in many aspects such as proposing new text-based mutation operators based on the nature of the application.
翻译:许多与自然语言有关的应用涉及由人类或机器创造的文本生成。虽然在许多这些应用中,机器支持人类,但在其他少数应用中,机器(例如对抗机器学习、社会机器人和巨魔)试图假冒人。在此范围内,我们提出并评价了几种突变的文本生成方法。与机器生成的文本不同,突变产生的文本样本需要作为投入。我们展示了突变操作者的例子,但这项工作在许多方面可以扩展,例如根据应用程序的性质提出新的基于文本的变异操作者。