In the author's PhD thesis (2019) universal envelopes were introduced as a tool for studying the continuously obtainable information on discontinuous functions. To any function $f \colon X \to Y$ between $\operatorname{qcb}_0$-spaces one can assign a so-called universal envelope which, in a well-defined sense, encodes all continuously obtainable information on the function. A universal envelope consists of two continuous functions $F \colon X \to L$ and $\xi_L \colon Y \to L$ with values in a $\Sigma$-split injective space $L$. Any continuous function with values in an injective space whose composition with the original function is again continuous factors through the universal envelope. However, it is not possible in general to uniformly compute this factorisation. In this paper we propose the notion of uniform envelopes. A uniform envelope is additionally endowed with a map $u_L \colon L \to \mathcal{O}^2(Y)$ that is compatible with the multiplication of the double powerspace monad $\mathcal{O}^2$ in a certain sense. This yields for every continuous map with values in an injective space a choice of uniformly computable extension. Under a suitable condition which we call uniform universality, this extension yields a uniformly computable solution for the above factorisation problem. Uniform envelopes can be endowed with a composition operation. We establish criteria that ensure that the composition of two uniformly universal envelopes is again uniformly universal. These criteria admit a partial converse and we provide evidence that they cannot be easily improved in general. Not every function admits a uniformly universal uniform envelope. We can however assign to every function a canonical envelope that is in some sense as close as possible to a uniform envelope. We obtain a composition theorem similar to the uniform case.


翻译:在作者的博士论文(2019年)中,通用信封被引入为一种工具,用于研究持续获得的关于不连续函数的信息。对于在$\operatorname{qcb ⁇ 0$-space之间的任何函数, $\col X\toY$至Y$, 您可以指定一个所谓的通用信封, 在定义明确的意义上, 该信封可以编码所有关于该函数的可连续获取的信息。 一个通用信封包含两个连续的函数 $F\ colone X\to L$和$\xxxxxi_L\lcoloral Y\ to l$, 其值以$\Sgmaxxxxlal- spitive space exprolity $lity $lupal $xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年5月24日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
77+阅读 · 2021年3月16日
专知会员服务
85+阅读 · 2020年12月5日
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
[DLdigest-8] 每日一道算法
深度学习每日摘要
4+阅读 · 2017年11月2日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员