Although neural networks can solve very complex machine-learning problems, the theoretical reason for their generalizability is still not fully understood. Here we use Wang-Landau Mote Carlo algorithm to calculate the entropy (logarithm of the volume of a part of the parameter space) at a given test accuracy, and a given training loss function value or training accuracy. Our results show that entropical forces help generalizability. Although our study is on a very simple application of neural networks (a spiral dataset and a small, fully-connected neural network), our approach should be useful in explaining the generalizability of more complicated neural networks in future works.
翻译:虽然神经网络可以解决非常复杂的机器学习问题,但其一般性理论原因仍然不完全理解。 在这里,我们使用Wang-Landau Mote Carlo算法来计算特定测试精度的酶(参数空间部分体积的对数 ), 以及特定的培训损耗函数值或培训精度。 我们的结果表明, 亲植物力有助于普遍性。 尽管我们的研究是在非常简单的应用神经网络(一个螺旋数据集和一个小型的、完全连接的神经网络)上,但我们的方法应该有助于解释未来工程中更为复杂的神经网络的通用性。