We model longitudinal macular thickness measurements to monitor the course of glaucoma and prevent vision loss due to disease progression. The macular thickness varies over a 6$\times$6 grid of locations on the retina with additional variability arising from the imaging process at each visit. Currently, ophthalmologists estimate slopes using repeated simple linear regression for each subject and location. To estimate slopes more precisely, we develop a novel Bayesian hierarchical model for multiple subjects with spatially varying population-level and subject-level coefficients, borrowing information over subjects and measurement locations. We augment the model with visit effects to account for observed spatially correlated visit-specific errors. We model spatially varying (a) intercepts, (b) slopes, and (c) log residual standard deviations (SD) with multivariate Gaussian process priors with Mat\'ern cross-covariance functions. Each marginal process assumes an exponential kernel with its own SD and spatial correlation matrix. We develop our models for and apply them to data from the Advanced Glaucoma Progression Study. We show that including visit effects in the model reduces error in predicting future thickness measurements and greatly improves model fit.
翻译:我们建立了一个纵向黄斑厚度测量模型,以监测痤疮的演变过程并预防疾病进展导致的视力损失。黄斑厚度随着视网膜上的一个 $6\times6$ 的网格的位置而变化,加上每次访问时的成像过程的额外变异。目前,眼科医生通过为每个受试者和位置重复简单线性回归来估计斜率。为了更精确地估计斜率,我们为多个受试者开发了一种新颖的贝叶斯分层模型,其中具有空间变异的人口水平和个体水平系数,借用了受试者和测量位置之间的信息。我们增加了访问效应,以考虑观察到的空间相关访问特定误差。我们用Mat\'ern交叉协方差函数的多变量高斯过程先验来建模空间变化的(a)截距、(b)斜率和(c)对数残余标准差(SD)。每个单行程过程假定具有自己的SD和空间相关矩阵的指数核函数。我们开发了我们的模型并将其应用于高级痤疮进展研究的数据。我们证明,将访问效应包含在模型中可以降低预测未来厚度测量的误差,并极大地改善模型拟合度。