项目名称: 静息态功能磁共振数据的非局部空间平滑方法研究

项目编号: No.81201153

项目类型: 青年科学基金项目

立项/批准年度: 2013

项目学科: 影像医学与生物医学工程

项目作者: 邢秀侠

作者单位: 北京工业大学

项目金额: 23万元

中文摘要: 近20年来,静息态功能磁共振技术(R-fMRI)逐显成熟并成为探索人脑功能和神经精神疾病的有力工具。R-fMRI能测量活体大脑内在功能活动。基于R-fMRI信号,可以计算各种指标来刻画人脑内在功能特性。在此过程中,原始数据必须经过一些预处理,高斯空间平滑是其中最常见和重要的一步,用来:增强信噪比、降低环效应、改善组分析误差和满足高斯随机场需求。随着快速磁共振成像技术发展,高斯平滑的局限凸显:加剧部分容积效应、降低空间分辨率、损害功能定位精度和限制结构功能关联。本项目采用偏微分方程理论中非局部扩散方程克服上述缺陷,研究非局部空间平滑对R-fMRI图像处理的影响。在个体和群组水平上,比较非局部平滑与高斯平滑在R-fMRI计算中的不同。本研究将为R-fMRI图像处理提供新方法,改进目前的R-fMRI图像处理流程,为高时空分辨率的R-fMRI计算提供新思路,推动其在神经和精神疾病研究中的应用。

中文关键词: 静息态功能磁共振成像;连接组;脑网络;空间平滑;非局部平滑

英文摘要: After nearly two decades, resting-state functional magnetic resonance imaging (R-fMRI) is becoming matured and rapidly emerging as a highly powerful tool in discovering various clinical neuropsychiatric disorders. It can measure the intrinsic functional activity of the human brain in vivo. Based on the R-fMRI signal, we can compute various functional indices to characterize the functional architecture of the human brain. In such a procedure, raw functional imaging data must be preprocessed with some algorithms, among which Gaussian spatial smoothing is the most common and critical for subsequent analyses to: 1) increase signal-to-noise ratio, 2) reduce the effects of ringing in images due to the restriction of sampling to a finite k-space region, 3) improve the errors on group-level statistics caused by imperfect spatial normalization, and 4) ensure the assumption on Gaussian random field during correction for multiple comparisons. However, contrasting with advances in fast MR imaging technology, as a local spatial averaging method, Gaussian smoothing is limited because of to: 1) increase partial volume effects, 2) reduce the spatial resolution, and 3) hurt the spatial accuracy of functional localization and barrier structure-function association studies. In this proposal, the non-local diffusion or smoothing fr

英文关键词: resting-state fMRI;connectome;brain network;spatial smoothing;non-local smoothing

成为VIP会员查看完整内容
0

相关内容

【AAAI2022】基于双流更新的视觉Transformer动态加速方法
专知会员服务
23+阅读 · 2021年12月11日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
15+阅读 · 2021年6月6日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
WWW22 | 图表示学习之时序的事件和节点动态
图与推荐
2+阅读 · 2022年4月4日
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
KDD2021 | 基于深度图卷积网络的多样化推荐
机器学习与推荐算法
0+阅读 · 2021年8月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
Automated Data Augmentations for Graph Classification
Differentiable Time-Frequency Scattering in Kymatio
Arxiv
0+阅读 · 2022年4月18日
Arxiv
14+阅读 · 2019年11月26日
小贴士
相关VIP内容
【AAAI2022】基于双流更新的视觉Transformer动态加速方法
专知会员服务
23+阅读 · 2021年12月11日
专知会员服务
27+阅读 · 2021年10月6日
专知会员服务
15+阅读 · 2021年6月6日
基于生理信号的情感计算研究综述
专知会员服务
61+阅读 · 2021年2月9日
【AAAI2021】基于双任务一致性的半监督医学图像分割
专知会员服务
30+阅读 · 2021年2月7日
相关资讯
WWW22 | 图表示学习之时序的事件和节点动态
图与推荐
2+阅读 · 2022年4月4日
【速览】TPAMI丨泛化边缘保持和结构保持图像平滑模型
中国图象图形学学会CSIG
1+阅读 · 2021年10月15日
KDD2021 | 基于深度图卷积网络的多样化推荐
机器学习与推荐算法
0+阅读 · 2021年8月24日
约束进化算法及其应用研究综述
专知
0+阅读 · 2021年4月12日
深度图像先验:无需学习即可生成新图像
论智
45+阅读 · 2017年12月4日
基于深度学习的肿瘤图像分割研究取得进展
中科院之声
17+阅读 · 2017年9月17日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员