In this article, we present a new Nested Cross Approximation (NNCA) for constructing H2 matrices. It differs from the existing NCAs~\cite{bebendorf2012constructing, zhao2019fast} in the technique of choosing pivots, a key part of the approximation. Our technique of choosing pivots is purely algebraic and involves only a single tree traversal. We demonstrate its applicability by developing a fast H2 matrix-vector product, that uses NNCA for the appropriate low-rank approximations. We illustrate the timing profiles and the accuracy of NNCA based H2 matrix-vector product. We also provide a comparison of NNCA based H2 matrix-vector product with the existing NCA based H2 matrix-vector products. A key observation is that NNCA performs better than the existing NCAs. In addition, using the NNCA based H2 matrix-vector product, we accelerate i) solving an integral equation in 3D and ii) Support Vector Machine (SVM). In the spirit of reproducible computational science, the implementation of the algorithm developed in this article is made available at \url{https://github.com/SAFRAN-LAB/NNCA}.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2023年10月25日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关论文
Arxiv
0+阅读 · 2023年10月25日
Arxiv
31+阅读 · 2020年9月21日
Arxiv
21+阅读 · 2019年8月21日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员