We develop and use a novel mixed-precision weighted essentially non-oscillatory (WENO) method for solving the Teukolsky equation, which arises when modeling perturbations of Kerr black holes. We show that WENO methods outperform higher-order finite-difference methods, standard in the discretization of the Teukolsky equation, due to the need to add dissipation for stability purposes in the latter. In particular, as the WENO scheme uses no additional dissipation it is well-suited for scenarios requiring long-time evolution such as the study of Price tails and gravitational wave emission from extreme mass ratio binaries. In the mixed-precision approach, the expensive computation of the WENO weights is performed in reduced floating-point precision that results in a significant speedup factor of 3.3. In addition, we use state-of-the-art Nvidia general-purpose graphics processing units and cluster parallelism to further accelerate the WENO computations. Our optimized WENO solver can be used to quickly generate accurate results of significance in the field of black hole and gravitational wave physics. We apply our solver to study the behavior of the Aretakis charge -- a conserved quantity, that if detected by a gravitational wave observatory like LIGO/Virgo would prove the existence of extremal black holes.
翻译:我们开发并使用一种新型混合精度加权加权,基本上非悬浮性(WENO)方法来解决Teukolsky方程式,该方程式是在模拟Kerr黑洞的扰动时产生的。我们显示,WeNO方法优于高阶定点差异方法,即Teukolsky方程式的离散标准,因为需要为稳定目的增加分解。特别是,WeNO方案没有使用其他类似消散处理器,而是适合需要长期演化的情景,例如对价格尾和极端质量比率硬度指数的高压波排放的研究。在混合精度方法中,WENO重量的计算费用是用较低的浮点精确度计算,从而导致3.3的大幅加速系数。此外,我们使用Nvidia通用图形处理器的状态和集群平行处理器来进一步加速WENO的计算。我们优化的WENO软件可被用于快速生成黑尾(B)值结果,在黑洞/红度观测仪的实地研究中,通过我们对黑洞/红心仪的深度研究,将运用我们的安全感应变变压的物理研究,从而测试的校验成。