This paper aims to improve robots' versatility and adaptability by allowing them to use a large variety of end-effector tools and quickly adapt to new tools. We propose AdaGrasp, a method to learn a single grasping policy that generalizes to novel grippers. By training on a large collection of grippers, our algorithm is able to acquire generalizable knowledge of how different grippers should be used in various tasks. Given a visual observation of the scene and the gripper, AdaGrasp infers the possible grasping poses and their grasp scores by computing the cross convolution between the shape encodings of the input gripper and scene. Intuitively, this cross convolution operation can be considered as an efficient way of exhaustively matching the scene geometry with gripper geometry under different grasp poses (i.e., translations and orientations), where a good "match" of 3D geometry will lead to a successful grasp. We validate our methods in both simulation and real-world environment. Our experiment shows that AdaGrasp significantly outperforms the existing multi-gripper grasping policy method, especially when handling cluttered environments and partial observations. Video is available at https://youtu.be/MUawdWnQDyQ
翻译:本文旨在改进机器人的多功能性和适应性, 让他们使用大量的终端效应工具, 并快速适应新工具。 我们提议AdaGrasp, 这是一种学习单一的套用政策的方法, 将它概括为普通的捕捉器。 通过对大量的抓抓器进行培训, 我们的算法能够获得关于不同抓抓器在各种任务中应如何使用不同抓抓器的通用知识。 根据对现场和抓抓器的视觉观察, AdaGrasp 通过计算输入控制器和场景的形状编码之间的交叉变异来推断可能的抓捉摸姿势和抓抓取分数。 我们的实验显示, AdaGrasp 大大优于现有的多位抓抓政策方法, 特别是在处理不同抓抓抓( 翻译和方向) 的定位时, 这种交叉变动操作可以被视为一种高效的方法, 将场景的几何形状与抓抓取的几何形状相相匹配( ) 。 3D 几维的几何测量方法将会成功掌握。 我们验证我们在模拟和真实环境中的方法。 我们的实验显示, AdaGrasp 将大大地显示, AM 部分观察 Q 。