For nonlinear equations, the homotopy methods (continuation methods) are popular in engineering fields since their convergence regions are large and they are quite reliable to find a solution. The disadvantage of the classical homotopy methods is that their computational time is heavy since they need to solve many auxiliary nonlinear systems during the intermediate continuation processes. In order to overcome this shortcoming, we consider the special explicit continuation Newton method with the residual trust-region time-stepping scheme for this problem. According to our numerical experiments, the new method is more robust and faster to find the required solution of the real-world problem than the traditional optimization method (the built-in subroutine fsolve.m of the MATLAB environment) and the homotopy continuation methods(HOMPACK90 and NAClab). Furthermore, we analyze the global convergence and the local superlinear convergence of the new method.


翻译:对于非线性方程式来说,单调方法(连续方法)在工程领域很受欢迎,因为它们的趋同区域很大,而且相当可靠,可以找到解决办法。古典的单调方法的缺点是,它们的计算时间很重,因为它们需要在中间连续过程中解决许多辅助非线性系统。为了克服这一缺陷,我们认为,特别明确的延续方法牛顿方法与这一问题的剩余信任区域时间跨步办法。根据我们的数字实验,新的方法比传统的优化方法(MATLAB环境的子例程folve.m)和同质性连续方法(HOMPACK90和NAClab)更强大和更快地找到现实世界问题所需的解决办法。此外,我们分析了新的方法的全球趋同和本地超线性趋同。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
53+阅读 · 2020年9月7日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年5月19日
Arxiv
4+阅读 · 2018年3月14日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
论文浅尝 | Reinforcement Learning for Relation Classification
开放知识图谱
9+阅读 · 2017年12月10日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员