Adaptive moving spatial meshes are useful for solving physical models given by time-dependent partial differentialequations. However, special consideration must be given when combining adaptive meshing procedures with ensemble-based data assimilation (DA) techniques. In particular, we focus on the case where each ensemble member evolvesindependently upon its own mesh and is interpolated to a common mesh for the DA update. This paper outlines aframework to develop time-dependent reference meshes using locations of observations and the metric tensors (MTs)or monitor functions that define the spatial meshes of the ensemble members. We develop a time-dependent spatiallocalization scheme based on the metric tensor (MT localization). We also explore how adaptive moving mesh tech-niques can control and inform the placement of mesh points to concentrate near the location of observations, reducingthe error of observation interpolation. This is especially beneficial when we have observations in locations that wouldotherwise have a sparse spatial discretization. We illustrate the utility of our results using discontinuous Galerkin(DG) approximations of 1D and 2D inviscid Burgers equations. The numerical results show that the MT localizationscheme compares favorably with standard Gaspari-Cohn localization techniques. In problems where the observationsare sparse, the choice of common mesh has a direct impact on DA performance. The numerical results also demonstratethe advantage of DG-based interpolation over linear interpolation for the 2D inviscid Burgers equation.
翻译:适应性移动空间网格对于解决基于时间的局部偏差给出的物理模型非常有用。 但是, 在将适应性网格程序与基于混合的数据同化(DA)技术相结合时, 需要特别考虑。 特别是, 我们注重每个组合成员根据自己的网格演变, 将其插入一个共同网格, 供DA更新时使用。 本文概述了利用观测地点和标准振标(MTs)或监测功能来开发基于时间的参考模型的框架, 以界定共同成员的空间网格功能。 我们开发了一个基于时间的基于时间的网格程序与基于共同数据同化(DDA)的技术。 我们还探讨了每个组合成员如何适应性网格根据自己的网格演变来控制并告知网格点的位置, 减少观测内部插图的误差。 当我们用基于观测地点的观测结果进行空间离析时, 这特别有益。 我们用不连续的加勒金(DGo) 近性线性调整计划基于1D和2号的本地平流性观测结果, 展示了本地平面平面的平差结果, 展示了当地平差的平比数据平比的平比 。