Given two random variables $X$ and $Y$, stochastic monotonicity describes a monotone influence of $X$ on $Y$. We prove two different characterizations of stochastically monotone $2$-copulas using the isomorphism between $2$-copulas and Markov operators. The first approach establishes a one-to-one correspondence between stochastically monotone copulas and monotonicity-preserving Markov operators. The second approach characterizes stochastically monotone copulas by their monotonicity property with respect to the Markov product. Applying the latter result, we identify all idempotent stochastically monotone copulas as ordinal sums of the independence copula $\Pi$.
翻译:在两个随机变量(X美元和Y美元)下,随机单调单调表示单调对美元的影响为1美元。我们用2美元铜板和Markov操作员之间的异形来证明2美元单调铜板的两种不同特征。第一种方法是在单调单调椰子和单调保制马可夫操作员之间建立一对一的对应。第二种方法是将马可夫产品的单调单调单调椰子的特性以其单调性质来定性。应用后一种结果,我们将所有一流的单调单调椰子作为独立的单调椰子的数值$\Pi$。