A property $\Pi$ on a finite set $U$ is \emph{monotone} if for every $X \subseteq U$ satisfying $\Pi$, every superset $Y \subseteq U$ of $X$ also satisfies $\Pi$. Many combinatorial properties can be seen as monotone properties. The problem of finding a minimum subset of $U$ satisfying $\Pi$ is a central problem in combinatorial optimization. Although many approximate/exact algorithms have been developed to solve this kind of problem on numerous properties, a solution obtained by these algorithms is often unsuitable for real-world applications due to the difficulty of building accurate mathematical models on real-world problems. A promising approach to overcome this difficulty is to \emph{enumerate} multiple small solutions rather than to \emph{find} a single small solution. To this end, given a weight function $w: U \to \mathbb N$ and an integer $k$, we devise algorithms that \emph{approximately} enumerate all minimal subsets of $U$ with weight at most $k$ satisfying $\Pi$ for various monotone properties $\Pi$, where "approximate enumeration" means that algorithms output all minimal subsets satisfying $\Pi$ whose weight at most $k$ and may output some minimal subsets satisfying $\Pi$ whose weight exceeds $k$ but is at most $ck$ for some constant $c \ge 1$. These algorithms allow us to efficiently enumerate minimal vertex covers, minimal dominating sets in bounded degree graphs, minimal feedback vertex sets, minimal hitting sets in bounded rank hypergraphs, etc., of weight at most $k$ with constant approximation factors.
翻译:在限定值的美元上, $\ pi 值的属性是 $ 美元 。 虽然已经开发了许多近似/ 精密的算法来解决众多属性的这类问题, 但是这些算法获得的解决方案往往不适合真实世界应用, 因为在现实问题上很难建立准确的数学模型, 美元 美元 美元 美元 美元 。 许多组合属性可以被视为一元属性。 许多组合属性可以被视为一元属性。 找到一个最小子集, 美元 满足 $\ pi 美元 是组合优化的核心问题 。 虽然已经开发了许多近似/ 精密的算法来解决许多属性的这类问题, 但是由于在现实问题上很难建立准确的数学模型, 美元, 每一个超值 美元 美元 。 一个很有希望的解决方案是多小的解决方案, 而不是 eemph{ { find} 单一的小解决方案。 对于此端, 一个重量的权重函数是 : U to to main ritial $ 美元 。