We provide a deterministic CONGEST algorithm to constant factor approximate the minimum dominating set on graphs of bounded arboricity in $O(\log\Delta)$ rounds. This improves over the well-known randomized algorithm of Lenzen and Wattenhofer[DISC2010] in two ways: it is deterministic and the logarithmic factor depends only on the maximum degree $\Delta$, not the number of vertices $n$.
翻译:我们提供了一种确定性的CONEST算法,其常数系数大约为以$O(\log\Delta) 圆形的捆绑性偏差的图表上设定的最低主导值。这在两个方面改善了Lenzen和Wattenhofer的众所周知的随机算法:它具有确定性,对数系数仅取决于最大度$\Delta$,而不是脊椎数$。