In their 2006 seminal paper in Distributed Computing, Angluin et al. present a construction that, given any Presburger predicate as input, outputs a leaderless population protocol that decides the predicate. The protocol for a predicate of size $m$ (when expressed as a Boolean combination of threshold and remainder predicates with coefficients in binary) runs in $\mathcal{O}(m \cdot n^2 \log n)$ expected number of interactions, which is almost optimal in $n$. However, the number of states of the protocol is exponential in $m$. Blondin et al. described in STACS 2020 another construction that produces protocols with a polynomial number of states, but exponential expected number of interactions. We present a construction that produces protocols with $\mathcal{O}(m)$ states that run in expected $\mathcal{O}(m^{7} \cdot n^2)$ interactions, optimal in $n$, for all inputs of size $\Omega(m)$. For this we introduce population computers, a carefully crafted generalization of population protocols easier to program, and show that our computers for Presburger predicates can be translated into fast and succinct population protocols.
翻译:在2006年《分布式计算,安格鲁因等人》中,在2006年的《分布式计算》中的开创性论文中,安格鲁因等人展示了一种构造,根据任何Presburger上游作为投入,可以输出出一个无领人口协议,从而决定上游。一个规模为百万美元的上游协议(如果以负负负负{O}(m\cdot n%2\log nn)的混合值表示,则以美元计算,预期的相互作用数量(以美元计算,几乎是最佳的)。然而,在STACS 2020 中描述的议定书国家数量是以百万美元为单位的指数。另一个生成协议,其金额为百万美元(以负负负负负数表示,但预期的倍数为负负负负负数的)美元(以负负负数表示),其数额为百万美元(m)和余值为美元(cdogn%2美元)的上游互动量(以美元计算出。然而,议定书国家数量是以百万(m)为单位的指数指数指数指数指数。对于所有的投入而言,我们将一个比较容易地将人口程序翻译成一个快速的人口程序,我们可以将一个更精确地将人口化为人口程序转换成一个更精确的人口程序。